我们提出了一种使用合理的心形和现实外观合成心脏MR图像的方法,目的是生成标记的数据进行深度学习(DL)训练。它将图像合成分解为标签变形和标签到图像翻译任务。前者是通过VAE模型中的潜在空间插值来实现的,而后者是通过条件GAN模型完成的。我们设计了一种在受过训练的VAE模型的潜在空间中的标记操纵方法,即病理合成,旨在合成一系列具有所需心脏病特征的伪病理合成受试者。此外,我们建议通过估计潜在矢量之间的相关系数矩阵来对2D切片之间的关系进行建模,并利用它在解码到图像空间之前将样品随机绘制的元素关联。这种简单而有效的方法导致从2D片段产生3D一致的受试者。这种方法可以提供一种解决方案,以多样化和丰富心脏MR图像的可用数据库,并为开发基于DL的图像分析算法的开发铺平道路。该代码将在https://github.com/sinaamirrajab/cardiacpathologysynthesis中找到。
translated by 谷歌翻译
对于基于MR物理学的模拟,对虚拟心脏MR图像的数据库进行了极大的兴趣,以开发深度学习分析网络。但是,这种数据库的使用受到限制或由于现实差距,缺失纹理以及模拟图像的简化外观而显示出次优性能。在这项工作中,我们1)在虚拟XCAT主题上提供不同的解剖学模拟,以及2)提出SIM2Real翻译网络以改善图像现实主义。我们的可用性实验表明,SIM2REAL数据具有增强训练数据并提高分割算法的性能的良好潜力。
translated by 谷歌翻译
我们提出了广义的概率U-NET,该概率U-NET通过将高斯分布的更通用形式作为潜在空间分布来扩展概率的U-NET,可以更好地近似参考分段中的不确定性。我们研究了潜在空间分布的选择对使用LIDC-IDRI数据集捕获参考分割中的不确定性的效果。我们表明,分布的选择会影响预测的样本多样性及其相对于参考分割的重叠。对于LIDC-IDRI数据集,我们表明,使用高斯人的混合物会导致广义能量距离(GED)度量相对于标准概率U-NET的统计显着改善。我们已经在https://github.com/ishaanb92/generalizedprobabilisticunet上提供了实施。
translated by 谷歌翻译
深度学习技术在检测医学图像中的对象方面取得了成功,但仍然遭受虚假阳性预测,可能会阻碍准确的诊断。神经网络输出的估计不确定性已用于标记不正确的预测。我们研究了来自神经网络不确定性估计的功能和基于形状的特征,这些特征是根据二进制预测计算出的,从二进制预测中,通过开发基于分类的后处理步骤来减少肝病病变检测中的假阳性,以用于不同的不确定性估计方法。我们证明了两个数据集上所有不确定性估计方法的神经网络的病变检测性能(相对于F1分数)的改善,分别包括腹部MR和CT图像。我们表明,根据神经网络不确定性估计计算的功能往往不会有助于降低假阳性。我们的结果表明,诸如阶级不平衡(真实假阳性比率)和从不确定性图提取的基于形状的特征之类的因素在区分假阳性和真实阳性预测方面起着重要作用
translated by 谷歌翻译
我们提升了一个具有多个注释的开放数据集,可以补充现有的ISIC和PH2皮肤病变分类数据集。此数据集包含非专家注释来源的Visual ABC(不对称,边框,颜色)功能:本科生,来自亚马逊MTURK的人群工人和经典图像处理算法。在本文中,我们首先分析了病变的注释与诊断标签之间的相关性,以及研究不同的注释来源之间的协议。总的来说,我们发现非专家注释与诊断标签的相关性较弱,不同的注释源之间的低协议。然后,我们将多任务学习(MTL)与额外标签一起研究,并表明非专家注释可以通过MTL改进(集成)最先进的卷积神经网络。我们希望我们的数据集可以用于进一步研究多个注释和/或MTL。 GitHub上提供所有数据和模型:https://github.com/raumannsr/enhance。
translated by 谷歌翻译
与许多研究领域相关的管状网络样结构(例如血管,神经元或道路)的准确分割与许多研究领域有关。对于这种结构,拓扑是它们最重要的特征。特别保留连接性:在血管网络的情况下,缺少连接的容器完全改变了血液流动的动力学。我们介绍了一种新颖的相似性度量,称为Centerlinedice(短CLDICE),该度量是根据分割掩模及其(形态)骨骼的相交进行计算的。从理论上讲,我们证明,CLDICE保证拓扑保存至二进制2D和3D分割的同型等效性。扩展这一点,我们提出了一种计算高效,可区分的损失函数(软性的),用于训练任意的神经分割网络。我们在五个公共数据集上基准了软性损失,包括船只,道路和神经元(2D和3D)。对软性播放的培训可通过更准确的连通性信息,更高的图形相似性和更好的体积分数进行分割。
translated by 谷歌翻译